288 research outputs found

    Bacillus thuringiensis Cry11Ba works synergistically with Cry4Aa but not with Cry11Aa for toxicity against mosquito Culex pipiens (Diptera: Culicidae) larvae

    Get PDF
    A 2,175-bp modified gene (cry11Ba-S1) encoding Cry11Ba from Bacillus thuringiensis subsp. jegathesan was designed and the recombinant protein was expressed as a fusion protein with glutathione S-transferase in Escherichia coli. The recombinant Cry11Ba was highly toxic against Culex pipiens mosquito larvae, being nine and 17 times more toxic than mosquitocidal Cry4Aa and Cry11Aa from Bacillus thuringiensis subsp. israelensis, respectively. Interestingly, a further increase in the toxicity of the recombinant Cry11Ba was achieved by mixing with Cry4Aa, but not with Cry11Aa. These findings suggested that Cry11Ba worked synergistically with Cry4Aa, but not with Cry11Aa, in exhibiting toxicity against C. pipiens larvae. On the other hand, the amount of Cry toxin bound to brush border membrane vesicles (BBMVs) did not significantly change between individual toxins and the toxin mixtures, suggesting that the increase in toxins binding to BBMVs was not a reason for the observed synergistic effect. It is generally accepted that synergism of toxins is a potentially powerful tool for enhancing insecticidal activity and managing Cry toxin resistance in mosquitoes. The mixture of Cry4Aa and Cry11Ba in order to increase toxicity would be very valuable in terms of mosquito control

    Evaluation of water dynamics of contour-levee irrigation system in sloped rice fields in Colombia

    Get PDF
    Contour-levee irrigation system is commonly used for rice cultivation in Latin American and Caribbean countries, but its water dynamics in commercial farm field settings are yet to be fully determined. This study aimed to investigate the water dynamics of the contour-levee irrigation system by analyzing conventional irrigation practices and by quantifying water balance and additionally to examine potential toposequential effects. Field experiments with different irrigation intervals were conducted on three commercial farms in Ibagué, Colombia for two seasons from 2017 to 2018. Irrigation and runoff water flows were constantly measured during the crop cycle using Parshall flumes with water level sensors. Percolation rate and field water table were measured using percolators and piezometers installed along the toposequence. The results showed that conventional irrigation management was highly flexible depending on soil permeability, rainfall, and agronomic factors, not particularly paying attention to ensure the flooded conditions during flowering period. The water balance resulted in the irrigation accounting for 76% of the total water input, whereas the runoff, ET, and percolation accounted for 40%, 21%, and 31% on overall average with considerable variation among the three farms. Percolation rates and duration with standing water did not show a clear and consistent tendency among the toposequential positions, but the percolation rate was significantly different among the farms corresponding to soil permeability. Consequently, clear toposequential effects on the water dynamics or on grain yield were not observed at the study site. To our knowledge, this study is the first to elucidate detailed water dynamics of contour-levee irrigation system in farm fields including toposequential difference

    Low phase noise THz generation from a fiber-referenced Kerr microresonator soliton comb

    Get PDF
    THz oscillators generated via frequency-multiplication of microwaves are facing difficulty in achieving low phase noise. Photonics-based techniques, in which optical two tones are translated to a THz wave through opto-electronic conversion, are promising if the relative phase noise between the two tones is well suppressed. Here, a THz (≈560 GHz) wave with a low phase noise is provided by a frequency-stabilized, dissipative Kerr microresonator soliton comb. The repetition frequency of the comb is stabilized to a long fiber in a two-wavelength delayed self-heterodyne interferometer, significantly reducing the phase noise of the THz wave. A measurement technique to characterize the phase noise of the THz wave beyond the limit of a frequency-multiplied microwave is also demonstrated, showing the superior phase noise of the THz wave to any other photonic THz oscillators (>300 GHz)

    Low phase noise THz generation from a fiber-referenced Kerr microresonator soliton comb

    Get PDF
    THz oscillators generated via frequency-multiplication of microwaves are facing difficulty in achieving low phase noise. Photonics-based techniques, in which optical two tones are translated to a THz wave through opto-electronic conversion, are promising if the relative phase noise between the two tones is well suppressed. Here, a THz (≈\approx 560 GHz) wave with an unprecedented phase noise is provided by a frequency-stabilized, dissipative Kerr microresonator soliton comb. The repetition frequency of the comb is stabilized to a long fiber in a two-wavelength delayed self-heterodyne interferometer, significantly reducing the phase noise of the THz wave. A new measurement technique to characterize the phase noise of the THz wave beyond the limit of a frequency-multiplied microwave is also demonstrated, showing the superior phase noise of the THz wave to any other THz oscillators (> 300 GHz)

    Versatile Multilinked Aerial Robot with Tilting Propellers: Design, Modeling, Control and State Estimation for Autonomous Flight and Manipulation

    Full text link
    Multilinked aerial robot is one of the state-of-the-art works in aerial robotics, which demonstrates the deformability benefiting both maneuvering and manipulation. However, the performance in outdoor physical world has not yet been evaluated because of the weakness in the controllability and the lack of the state estimation for autonomous flight. Thus we adopt tilting propellers to enhance the controllability. The related design, modeling and control method are developed in this work to enable the stable hovering and deformation. Furthermore, the state estimation which involves the time synchronization between sensors and the multilinked kinematics is also presented in this work to enable the fully autonomous flight in the outdoor environment. Various autonomous outdoor experiments, including the fast maneuvering for interception with target, object grasping for delivery, and blanket manipulation for firefighting are performed to evaluate the feasibility and versatility of the proposed robot platform. To the best of our knowledge, this is the first study for the multilinked aerial robot to achieve the fully autonomous flight and the manipulation task in outdoor environment. We also applied our platform in all challenges of the 2020 Mohammed Bin Zayed International Robotics Competition, and ranked third place in Challenge 1 and sixth place in Challenge 3 internationally, demonstrating the reliable flight performance in the fields

    Semantic Scene Difference Detection in Daily Life Patroling by Mobile Robots using Pre-Trained Large-Scale Vision-Language Model

    Full text link
    It is important for daily life support robots to detect changes in their environment and perform tasks. In the field of anomaly detection in computer vision, probabilistic and deep learning methods have been used to calculate the image distance. These methods calculate distances by focusing on image pixels. In contrast, this study aims to detect semantic changes in the daily life environment using the current development of large-scale vision-language models. Using its Visual Question Answering (VQA) model, we propose a method to detect semantic changes by applying multiple questions to a reference image and a current image and obtaining answers in the form of sentences. Unlike deep learning-based methods in anomaly detection, this method does not require any training or fine-tuning, is not affected by noise, and is sensitive to semantic state changes in the real world. In our experiments, we demonstrated the effectiveness of this method by applying it to a patrol task in a real-life environment using a mobile robot, Fetch Mobile Manipulator. In the future, it may be possible to add explanatory power to changes in the daily life environment through spoken language.Comment: Accepted to 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2023

    A Field Programmable Sequencer and Memory with Middle Grained Programmability Optimized for MCU Peripherals

    Get PDF
    A Field Programmable Sequencer and Memory (FPSM), which is a programmable unit exclusively optimized for peripherals on a micro controller unit, is proposed. The FPSM functions as not only the peripherals but also the standard built-in memory. The FPSM provides easier programmability with a smaller area overhead, especially when compared with the FPGA. The FPSM is implemented on the FPGA and the programmability and performance for basic peripherals such as the 8 bit counter and 8 bit accuracy Pulse Width Modulation are emulated on the FPGA. Furthermore, the FPSM core with a 4K bit SRAM is fabricated in 0.18µm 5 metal CMOS process technology. The FPSM is an half the area of FPGA, its power consumption is less than one-fifth.Embargo Period 6 month

    A Field Programmable Sequencer and Memory with Middle Grained Programmability Optimized for MCU Peripherals

    Full text link
    • …
    corecore